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We present the VASPKIT, a command-line program that aims at providing a robust and user-friendly 
interface to perform high-throughput analysis of a variety of material properties from the raw data 
produced by the VASP code. It consists of mainly the pre- and post-processing modules. The former 
module is designed to prepare and manipulate input files such as the necessary input files generation, 
symmetry analysis, supercell transformation, k-path generation for a given crystal structure. The latter 
module is designed to extract and analyze the raw data about elastic mechanics, electronic structure, 
charge density, electrostatic potential, linear optical coefficients, wave function plots in real space, etc. 
This program can run conveniently in either interactive user interface or command line mode. The 
command-line options allow the user to perform high-throughput calculations together with bash scripts. 
This article gives an overview of the program structure and presents illustrative examples for some of 
its usages. The program can run on Linux, macOS, and Windows platforms. The executable versions of 
VASPKIT and the related examples and tutorials are available on its official website vaspkit .com.

Program summary
Program title: VASPKIT
CPC Library link to program files: https://doi .org /10 .17632 /v3bvcypg9v.1
Licensing provisions: GPLv3
Programming language: Fortran, Python
Nature of problem: This program has the purpose of providing a powerful and user-friendly interface to 
perform high-throughput calculations together with the widely-used VASP code.
Solution method: VASPKIT can extract, calculate and even plot the mechanical, electronic, optical and 
magnetic properties from density functional calculations together with bash and python scripts. It can 
run in either interactive user interface or command line mode.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

With the rapid development of high-performance computa-
tions and computational algorithms, high-throughput computa-
tional analysis and discovery of materials has become an emerging 
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research field because it promises to avoid time-consuming try and 
error experiments and explore the hidden potential behind thou-
sands of potentially unknown materials within short timeframes 
that the real experiments might take a long time. Density func-
tional theory (DFT) is one of the most popular methods that can 
treat both model systems and realistic materials in a quantum me-
chanical way [1–5]. It is not only used to understand the observed 
behavior of solids, including the structural, mechanical, electronic, 
magnetic and optical properties, but increasingly more to predict 
characteristics of compounds that have not yet been determined 
experimentally [6–12].
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The last two decades have witnessed tremendous progress in 
the methodology development for first-principles calculations of 
materials properties. Dozens of electronic-structure computation 
packages have been developed based on DFT so far, such as Abinit 
[13], CASTEP [14], VASP [15,16], Siesta [17], Quantum Espresso 
[18,19], Elk [20] and WIEN2k [21], with great success in exploring 
material properties. One of the common features for these pack-
ages is that post-processing is required to extract and/or plot into 
a human-readable format from the raw data. There are two pop-
ular commercial programs, Materials Studio [22] and QuantumATK 
[23], providing a graphical user interface (GUI) that allows the 
researchers to efficiently build, visualize, and review results and 
calculation setup up with a set of mouse actions. However, these 
GUI programs become less productive when the users want to per-
form batch processing operations. In contrast, several open-source 
post-processing packages, such as Python Materials Genomics (py-
matgen) [24], Atomic Simulation Environment (ASE) [25], and PyP-
rocar [26] provide powerful command-line interfaces to efficiently 
extract, plot and analyze the raw data in batch mode but require 
the users to be proficient in Python programming language. It is 
worth mentioning here that both lev00 [27] and qvasp [28] are 
two interactive menu-driven programs written in Fortran which 
mainly focus on the post-processing of electronic structure calcu-
lations using VASP and other codes.

In this article we will introduce a toolkit, referred to as VASPKIT 
which is developed to provide a robust and user-friendly inte-
grated input/output environment to perform initial setup for cal-
culations and post-processing analysis to derive various material 
properties from the raw data calculated using the VASP code. It is 
capable of calculating the elastic, electronic, optical and catalytic 
properties including equation of state, elastic constants, carrier 
effective masses, Fermi surfaces, band structure unfolding for su-
percell models, linear optical coefficients, joint density of states, 
transition dipole moment, wave functions plots in real space, ther-
mal energy correction, etc. In addition, it also allows the users to 
perform high-throughput calculations with low barriers to entry. 
For example, we recently performed high-throughput calculations 
to screen hundreds of two-dimensional (2D) semiconductors from 
near 1000 monolayers using this program together with VASP [29]. 
The VASPKIT remains in development, with growing functionality, 
and is ready to be extended to work directly with outputs from 
other electronic structure packages.

The rest of this paper is organized as follows: In Section 2
the workflow and basic features of the pre-processing module as 
implemented into VASPKIT are described. Section 3 presents the 
computational algorithms and some examples illustrating the ca-
pabilities of post-processing module in the VASPKIT code. Finally, 
it ends with the Summary section.

2. Capabilities of the pre-processing module

The workflow of the VASPKIT package is illustrated in Fig. 1. 
In the pre-processing module, the program first reads the POSCAR 
file and then prepares the rest three input files (INCAR, POTCAR 
and KPOINTS) to perform DFT calculations using VASP. It can also 
manipulate the structure file such as building supercell, generat-
ing the suggested k-path for band structure calculation, determin-
ing the crystal symmetry information, or finding the convention-
al/primitive cell for a given lattice by employing the symmetry 
analysis library Spglib [30]. Furthermore, it can convert POSCAR 
to several widely-used structural formats, such as XCrysDen (.xsf) 
[31], Crystallographic Information Framework (.cif) [32] or Protein 
Data Bank (.pdb) formats [33].
2

Fig. 1. (Color online.) A structural overview of the VASPKIT package.

2.1. Definitions and conversions of crystal structures

The crystal structures are often provided by basis vectors and 
point coordinates of labeled atoms. Lattice basis vectors A are rep-
resented by three row vectors

A =
⎛
⎝ a

b
c

⎞
⎠ =

⎛
⎝ ax ay az

bx by bz

cx c y cz

⎞
⎠ . (1)

The position of an ion is represented by a row vector either in 
fractional coordinates (x, y, z) concerning basis vector lengths or 
in Cartesian coordinates (X , Y , Z ). The relationship of these two 
coordinates is written as⎛
⎝ X

Y
Z

⎞
⎠ = AT

⎛
⎝ x

y
z

⎞
⎠ =

⎛
⎝ ax bx cx

ay by c y

az bz cz

⎞
⎠

⎛
⎝ x

y
z

⎞
⎠ , (2)

where AT denotes the matrix transpose of lattice basis vectors A.
The conversion from one lattice basis (a, b, c) to another choice 

of lattice basis (a′ , b′ , c′) is given by⎛
⎝ a′

b′
c′

⎞
⎠ = M ·

⎛
⎝ a

b
c

⎞
⎠ , (3)

where M is the transformation matrix. Its determinant |M| defines 
the ratio between the supercell and primitive cell volumes in the 
real space. Fig. 2 shows how to construct a supercell (SC) from the 
specified transformation matrix and the primitive cell (PC) lattice 
vectors.

2.2. Generation of suggested k-path

In order to plot a band structure, one needs to define a set 
of k-points along with desired high-symmetry directions in the 
Brillouin zone (BZ). The k-path utility automatically generates the 
suggested k-path for a given 2D [29] or bulk [34] crystal struc-
ture. The flowchart of the algorithm to determine the suggested 
k-path for a given crystal is shown in Fig. 3 (a). Specifically, VASP-
KIT first determines the space group number, crystal family and 
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Fig. 2. (Color online.) Schematic illustration of building a supercell from the lattice 
vectors of a primitive cell (PC) and the specified transformation matrix. The super-
cell and primitive cell are indicated by the yellow and red rhombuses.

Bravais lattice type from the input structure, typically read from 
the POSCAR file; a standardized conventional cell is then iden-
tified and constructed by idealizing the lattice vectors based on 
the axial lengths and the interaxial angles, aiming to eliminate the 
non-unique choices in the possible shapes of BZ in certain Bra-
vais lattices [35,34]; then the standard primitive cell is determined 
by transforming the basis vectors of the standard conventional cell 
according to Eq. (4),⎛
⎝ ap

bp

cp

⎞
⎠ = P ·

⎛
⎝ ac

bc

cc

⎞
⎠ , (4)

where (ap , bp , cp) and (ac , bc , cc) are the basis vectors of primi-
tive and conventional systems, respectively, P is the transformation 
matrix from the standardized conventional cell to the primitive 
cell, as summarized in Table 3 in Ref. [34], and the subscripts c
and p represent the primitive and conventional cells respectively. 
The atomic position of an ion in fractional coordinates transformed 
from the basis vectors of a conventional cell to those of primitive 
cell is written as below:⎛
⎝ xp

yp

zp

⎞
⎠ = P−1

⎛
⎝ xc

yc

zc

⎞
⎠ . (5)

It should be noted that the number of atoms in the PC is gener-
ally less than that in SC. This means that the transformation from 
SC to PC leads to some duplicated atoms, which must be removed. 

Fig. 3. (Color online.) (a) Workflow of the algorithm used in the k-path utility. The first Brillouin zone, special high symmetry points, and recommended k-paths for (a) 2D 
rectangular, (b) 2D oblique, (c) face-centered cubic and (d) hexagonal close-packed lattices respectively.

In the final step, the k-path utility automatically saves the standard 
primitive cell and the suggested k-path into the PRIMCELL.vasp 
and KPATH.in files respectively. In addition to the automatic gen-
eration of the suggested k-path when a crystal structure is given 
as input, VASPKIT also provides the python script to visualize the 
specified k-path in the first Brillouin zone using Matplotlib plotting 
library [36]. As illustrative examples, the recommended k-paths of 
2D-rectangular, 2D-oblique and face-centered cubic and hexagonal 
lattices are show in Fig. 3 (b)-(e) respectively.

3. Capabilities of the post-processing module

Fig. 4 displays an overview of the post-processing features as 
implemented into the VASPKIT package. This module is designed 
to extract and analyze the raw data including elastic mechan-
ics, electronic, charge density, electrostatic potential, optical wave-
function, catalysis and molecular dynamics related properties. We 
next present the computational algorithms and some examples to 
illustrate the capabilities of the post-processing module.

3.1. Elastic mechanics

The second-order elastic constants (SOECs) play a crucial role 
in governing materials’ mechanical and dynamical properties, espe-
cially on the stability and stiffness. Within the linear elastic region, 
the stress σ = (σ1, σ2, σ3, σ4, σ5, σ6) response of solids to external 
loading strain ε = (ε1, ε2, ε3, ε4, ε5, ε6) satisfies the generalized 
Hooke’s law and can be simplified in the Voigt notation [37],

σi =
6∑

j=1

Ci jε j, (6)

where strain σi and stress ε j are represented as a vector with 6 
independent components respectively, i.e., 1 ≤ i, j ≤ 6. Ci j is the 
second-order elastic stiffness tensor expressed by a 6 × 6 sym-
metric matrix in units of GPa. The elastic stiffness tensor Ci j can 
be determined using the first-order derivative of the stress-strain 
curves proposed by Nielsen and Martin [38,39], as expressed in 
Eq. (6). The number of independent elastic constants depends on 
the symmetry of the crystal. The lower the symmetry means the 
more the independent elastic constants. For example, the cubic 
crystals have three but the triclinic ones have 21 independent 
elastic constants. The classification of the different crystal system 
with the corresponding number of independent elastic constants 
for bulk materials is summarized in Table 1 [40–42].

An alternative theoretical approach to calculate elastic con-
stants is based on the energy variation by applying minor strains 
to the equilibrium lattice configuration [43]. The elastic energy 
�E (V , {εi}) of a solid under the harmonic approximation is
3
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Table 1
Classification of crystal systems, point group classes, and space-group numbers are provided with the number of independent second elastic 
constants for bulk materials. In the last column, several prototype materials are shown.

Crystal system Point groups Space-groups Number of independent SOECs Material prototypes

Triclinic 1, 1 1-2 21 -
Monoclinic m,2, 2

m 3-15 13 ZrO2

Orthorhombic 222,mm2, 2
m

2
m

2
m 16-74 9 TiS2

Tetragonal I 422,4mm, 42m, 4
m

2
m

2
m 89-142 6 MgF2

Tetragonal II 4, 4, 4
m 75-88 7 CaMoO4

Trigonal I 32,3m, 3 2
m 149-167 6 α-Al2O3

Trigonal II 3, 3 143-148 7 CaMg(CO3)2

Hexagonal 622,6mm, 62m, 6
m

2
m

2
m ,6, 6, 6

m 168-194 5 Ti
Cubic 432, 43m, 4

m 3 2
m ,23, 2

m 3 195-230 3 Diamond
Fig. 4. (Color online.) A structural overview of the post-processing module imple-
mented into the VASPKIT package.

given by

�E (V , {εi}) = E (V , {εi}) − E (V 0,0)

= V 0

2

6∑
i, j=1

Ci jε jεi,
(7)

where E (V 0,0) and E (V , {εi}) are the total energies of the equi-
librium and distorted lattice cells, with the volume of V 0 and 
V , respectively. In the energy-strain method the elastic stiffness 
tensor is derived from the second-order derivative of the total en-
ergy versus strain curves [43]. In general, the stress-strain method 
requires higher computational precision to achieve the same ac-
curacy as the energy-strain method. Nevertheless, it requires less 
distortion set than the latter [40,41,44,45,43]. Considering that the 
energy-strain relation has less stress sensitivity than the stress-
strain one, the former method has been implemented into the 
VASPKIT package. Meanwhile, the determination of elastic stability 
criterion is also provided in the elastic utility based on the neces-
sary and sufficient elastic stability conditions in the harmonic ap-
proximation [46] for various crystal systems proposed by Mouhat 
et al. [40,41,47].

When a crystal is deformed by applying strain ε, the relation of 
lattice vectors between the distorted and equilibrium cells is given 
by⎛
⎝ a′

b′
c′

⎞
⎠ =

⎛
⎝ a

b
c

⎞
⎠ · (I + ε), (8)
4

Fig. 5. (Color online.) Workflow of the algorithm to determine the second-order 
elastic constants based on the energy-strain method used in the elastic utility.

where I is the 3 × 3 identity matrix. The strain tensor ε is defined 
by

ε =
⎛
⎝ ε1 ε6/2 ε5/2

ε6/2 ε2 ε4/2
ε5/2 ε4/2 ε3

⎞
⎠ . (9)

The workflow of elastic utility is shown in Fig. 5. VASPKIT first 
reads the equilibrium structure from POSCAR in which both lattice 
parameters and atomic positions are fully relaxed. In addition, the 
dimensionality of material (either 2D or 3D) and the number of 
applied strain ε need to be specified as input. For 2D materials, in 
order to avoid mirror interactions the periodic slabs are required 
to separate by sufficiently large vacuum layer in c direction. In the 
second step, the space group number and the type of input struc-
ture are analyzed by using the Spglib code [30] to determine how 
many independent elastic constants need to be calculated. A clas-
sification of the different crystal system with the corresponding 
number of independent elastic constants is given in Table 1. Fur-
thermore, a standard conventional cell needs to be adopted in the 
following calculations since the components of Ci j are dependent 
on the choice of the coordinate system and lattice vectors. Af-
ter that, based on the determined space group number, a series 
of distorted structures with specified values of strain around the 
equilibrium are generated via Eq. (8). Next, the elastic energies 
are calculated for each distorted structure by using VASP. Then, 
a polynomial fitting procedure is applied to calculate the second 
derivative at the equilibrium of the energy with respect to the 
strain. Finally, various mechanical properties such as bulk, shear 
modulus and Poisson’s ratio for polycrystalline materials are deter-
mined.
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We take the cubic structure as an example to demonstrate how 
to calculate its independent elastic constants by using the energy-
strain method. For cubic system, the three independent elastic con-
stants C11, C12 and C44, are expressed in an elastic stiffness tensor 
matrix

Ccubic
i j =

⎛
⎜⎜⎜⎜⎜⎝

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

⎞
⎟⎟⎟⎟⎟⎠

. (10)

After substituting Eq. (10) into Eq. (7), the elastic energy is 
written as below:

�E

V
= 1

2
(C11ε1ε1 + C11ε2ε2 + C11ε3ε3 + C12ε1ε2

+ C12ε1ε3 + C12ε2ε1 + C12ε2ε3 + C12ε3ε1

+ C12ε3ε2 + C44ε4ε4 + C44ε5ε5 + C44ε6ε6).

(11)

When applied the tri-axial shear strain ε=(0,0,0,δ,δ,δ), Eq. (10)
becomes

�E

V
= 3

2
C44δ

2. (12)

Similarly, C11+C12 can be obtained by using the strain ε=(δ,δ,0,
0,0,0):

�E

V
= (C11 + C12) δ2. (13)

Also, C11 + 2C12 is calculated using the strain ε=(δ,δ,δ,0,0,0):

�E

V
= 3

2
(C11 + 2C12) δ2. (14)

In order to calculate the elastic stiffness constants given above, 
the elastic energies of a set of deformed configurations in the 
distortion range -2% ≤ δ ≤ +2% with an increment of 0.5% are 
investigated using VASP. After that, the quadratic coefficients are 
determined by fitting the energy versus distortion relationship, 
and finally the second-order elastic constants Cij are determined 
by solving the equations (12)-(14) during the post-processing of 
elastic utility. The details of strain modes and the derived elastic 
constants for each crystal system based on the energy-strain ap-
proach are listed in Appendix A.

The crystallites are randomly oriented for polycrystalline ma-
terials, and such materials can be considered quasi-isotropic or 
isotropic in a statistical sense. Thus, the bulk modulus K and 
shear modulus G are generally obtained by averaging the single-
crystal elastic constants. Three of the most widely used averaging 
approaches have been implemented into the elastic utility: Voigt 
[37], Reuss [48], and Hill [49] schemes. Hill has shown that the 
Voigt and Reuss elastic moduli are the strict upper and lower 
bounds [49], respectively. The arithmetic mean of the Voigt and 
Reuss bounds termed the Voigt-as Reuss-Hill (VRH) average, is a 
better approximation to a polycrystalline material’s actual elastic 
behavior.

The Voigt bounds are given by the following equations:⎧⎨
⎩

9KV = (C11 + C22 + C33) + 2 (C12 + C23 + C31)

15GV = (C11 + C22 + C33) − (C12 + C23 + C31)

+4 (C44 + C55 + C66)

, (15)

while the Reuss bounds are given by:⎧⎨
⎩

1/KR = (S11 + S22 + S33) + 2 (S12 + S23 + S31)

15/GR = 4 (S11 + S22 + S33) − 4 (S12 + S23 + S31)

+3 (S + S + S )

, (16)

44 55 66

5

where Si j are the components of compliance tensor, which corre-
spond to the matrix elements of the inverse of the elastic tensor, 
namely, 

[
Sij

] = [
Cij

]−1
. Based on the Voigt and Reuss bounds, Hill 

defined KVRH = 1/2 (KV + KR) and GVRH = 1/2 (GV + GR), known 
as the Voigt-Reuss-Hill average [49]. Using the values of bulk mod-
ulus K and shear modulus G , the Young’s modulus E and Poisson’s 
ratio ν can be obtained by E = 9K G

3K+G and ν = 3K−2G
2(3K+G)

, respec-
tively.

For 2D materials, VASPKIT assumes the crystal plane in the xy
plane. Then the relation between strain and stress can be written 
in the following form [40,50]
⎛
⎝ σ1

σ2
σ6

⎞
⎠ =

⎛
⎝ C11 C12 C16

C21 C22 C26
C61 C62 C66

⎞
⎠ ·

⎛
⎝ ε1

ε2
ε6

⎞
⎠ , (17)

where Ci j (i,j=1,2,6) is the in-plane stiffness tensor. The strain ten-
sor ε in Eq. (9) is simplified as

ε2D =
⎛
⎝ ε1 ε6/2 0

ε6/2 ε2 0
0 0 0

⎞
⎠ . (18)

Then the elastic strain energy per unit area based on the strain-
energy method can be expressed as [51]

�E (S, {εi}) = S0

2
(C11ε

2
1 + C22ε

2
2 + 2C12ε1ε2

+2C16ε1ε6 + 2C26ε2ε6 + C66ε
2
6),

(19)

where S0 is the equilibrium area of the system. Clearly, the Ci j
is equal to the second partial derivative of strain energy �E with 
respect to strain ε, namely, Ci j = (1/S0)(∂

2�E/∂εi∂ε j). Therefore, 
the unit of elastic stiffness tensor for 2D materials is force per unit 
length (N/m). The classification of the different crystal system with 
the corresponding number of independent elastic constants and 
elastic stability conditions for 2D materials are summarized in Ta-
ble 2. The details of strain modes and the derived elastic constants 
for each 2D crystal system based on the energy-strain approach 
are listed in Appendix B.

In order to provide a benchmark for computational studies, we 
list the calculated second-order elastic constants for bulk and 2D
prototype materials belonging to different crystal systems in Ta-
bles 3 and 4 respectively, together with other theoretical values 
[41,52–54] for comparison purposes. It is found that the results 
produced with different DFT codes are in good agreement with 
each other.

3.2. Equations of state

Thermodynamic equations of state (EOS) for crystalline solids 
describe the relationships among the internal energy E , pressure 
P , volume V and temperature T . It plays a crucial role in pre-
dicting the structural and thermodynamical properties of materials 
under high pressure and high temperature in condensed matter 
sciences [55], especially in extreme conditions such as earth or 
planetary interiors where the properties of materials are quite 
different from those found at ambient conditions [56]. Various 
EOS formulas have been proposed. One of the most widely used 
isothermal EOSs in solid-state physics is the Murnaghan EOS model 
assuming that the bulk modulus varies linearly with pressure [57]. 
The resulting energy–volume relationship is given as:

E(ν) = E0 + B V 0
(

ν−C − 1 + ν − 1

)
, (20)
(C + 1) C
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Table 2
Classification of crystal systems and independent elastic constants for 2D materials [50]. In the last column, several prototype 
materials are shown.

Crystal system Number of independent SOECs Independent SOECs Material prototypes

Oblique 6 C11, C12, C22, C16, C26, C66 -
Rectangle 4 C11, C12, C22, C66 Borophene
Square 3 C11, C12, C66 SnO
Hexagonal 2 C11, C12 Graphene, MoS2

Table 3
PBE-calculated elastic stiffness constants (in units of GPa) for ZrO2, TiS2, MgF2, CaMoO4, α-Al2O3, CaMg(CO3)2, Ti and Diamond. For comparison purposes, the available 
theoretical values from the literature are also shown [41].

Ci j ZrO2 TiS2 MgF2 CaMoO4 α-Al2O3 CaMg(CO3)2 Ti Diamond

Calc. Ref. Calc. Ref. Calc. Ref. Calc. Ref. Calc. Ref. Calc. Ref. Calc. Ref. Calc. Ref.

C11 334 334 314 312 134 130 130 126 452 451 192 194 184 189 1051 1052
C12 155 151 29 28 80 78 53 58 149 151 64 67 83 85 127 125
C13 82 82 78 84 59 55 47 46 108 108 54 57 78 74
C14 20 21 17 18
C15 26 32 13 12
C16 10 10
C22 352 356 311 306
C23 146 142 25 21
C24

C25 5 2
C26

C33 263 251 404 406 192 185 112 110 455 452 107 108 197 187
C34

C35 2 7
C36

C44 78 71 73 73 52 61 30 29 133 132 37 39 46 41 560 559
C45

C46 15 15
C55 70 71 100 106
C56

C66 113 115 118 117 90 83 38 34

Table 4
PBE-calculated in-plane elastic stiffness constants (in units of N/m). For comparison purposes, the available theoretical or 
experimental values from the previous literature are also shown.

Systems C11 C22 C12 C66

Our work Literature Our work Literature Our work Literature Our work Literature

Graphene 349.1 358.1 [52] 60.3 60.4 [52]
MoS2 128.9 131.4 [53] 32.6 32.6 [53]
SnO 48.14 38.9 39.0
Phosphorene 104.4 105.2 [54] 34.0 26.2 [54] 21.6 18.4 [54] 27.4
where ν = V
V 0

, V 0 and E0 are the volume and energy at zero pres-
sure respectively. The values of bulk modulus K and its pressure 
derivative K ′ can be further deduced in terms of the fitting param-
eters B and C . The bulk modulus K is a measure of the resistance 
of a solid material to compression. It is defined as the proportion 
of volumetric stress related to the volumetric strain for any mate-
rial, namely,

K = −V

(
∂ P

∂V

)
T
. (21)

The workflow of EOS utility is similar to that of the elastic con-
stants presented in Fig. 5. In addition to the equilibrium volume 
and bulk modulus, pressure and energy as functions of volume 
are also provided in this utility. Very recently, Latimer et al. eval-
uated the quality of fit for the 8 widely-used EOS models listed 
in Table 5 across 87 elements and over 100 compounds [55]. They 
pointed out that it is hard to find a universal EOS model applicable 
to all types of solids and accurate over the whole range of pres-
sure. Furthermore, their results reveal that the Birch-Euler [58], 
Tait [59], and Vinet [60] models give the best overall quality of 
fit to the calculated energy-volume curves among all the equations 
under examination. However, the inconsistencies among these in-
6

vestigated equations are not significant. As a benchmark test, the 
calculated energy and pressure of diamond as a function of vol-
ume using different EOS models are presented in Fig. 6. One can 
find that the agreement among these EOS fits is very satisfactory 
on the whole. The calculated bulk modulus ranges from 440 GPa 
to 442 GPa, in good agreement with the experimental value of 443 
GPa [61].

3.3. Band structure and density of states

The band structure is one of the essential concepts in solid-state 
physics. It provides the electronic levels in crystal structures, which 
are characterized by two quantum numbers, the band index n and 
the Bloch vector k, along with high symmetry directions in the 
BZ. Besides the band structure, the density of states (DOS) is an-
other quantity that is defined as the number of states per interval 
of energy at each energy level that is available to be occupied by 
electrons. A high DOS at a specific energy level means that there 
are many states available for occupation and zero DOS means that 
no state can be occupied at that energy level. DOS can be used to 
calculate the density of free charge carriers in semiconductors, the 
electronic contribution to the heat capacity in metals. Moreover, it 
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Table 5
The analytic formulae of energy-volume relation and bulk modulus K for several widely used EOS models based on Table 1 of Ref. [55].

Model Internal energy E Bulk modulus K (ν = 1)

Birch (Euler) [58] E = E0 + B V 0

((
ν− 2

3 − 1
)2 + c

2

(
ν− 2

3 − 1
)3

)
8B
9

Birch (Lagrange) [58] E = E0 + B V 0C − B Voν
2
3

(
(C − 2)

(
1 − ν

2
3

)2 + C
(

1 − ν
2
3

)
+ C

)
16B

9

Mie-Gruneisen [62] E = E0 + B V 0
C − B V 0

C−1

(
ν− 1

3 − 1
C ν− c

3

)
B
9

Murnaghan [57] E = E0 + B V 0
(C+1)

(
ν−c−1

C + ν − 1
)

B

Pack-Evans-James [63] E = E0 + B V 0
c

⎛
⎝ 1

c

⎛
⎝e

3C

(
1−ν

1
3

)
− 1

⎞
⎠ − 3

(
1 − ν

1
3

)⎞
⎠ B

Poirier-Tarantola [64] E = E0 + B V 0(ln(ν))2(3 − C(ln(ν))) 6B

Tait [59] E = E0 + B V 0
C

(
ν − 1 + 1

C

(
eC(1−ν) − 1

))
B

Vinet [60] E = E0 + B V 0
C2

⎛
⎝1 −

(
1 + C

(
ν

1
2 − 1

))
e
−C

(
ν

1
3 −1

)⎞
⎠ B

9

Fig. 6. (Color online.) The equations of states of diamond using different EOS models 
as listed in Table 5.

also provides an indirect description of magnetism, chemical bond-
ing, optical absorption spectrum, etc.

In addition to the conventional plain band structure, VASPKIT 
can also deal with the projected band which provides insight into 
the atomic orbital contributions in each state. As illustrated exam-
ples, the projected band structures and density of states (DOS) of 
BiClO (P 4/nmm) and graphene monolayers are depicted in Fig. 7. 
To illustrate the band dispersion anisotropy of 2D materials, the 3D 
global band structures of the highest valence and lowest conduc-
tion bands for MoTe2 (P 6m2) and BiIO are shown in Fig. 8.

3.4. Effective masses of carriers

Generally, the band dispersions close to conduction or valence 
band extrema can be approximated as parabolic for the semicon-
ductors with low carrier concentrations. Consequently, the analyt-
ical expression of effective masses of carriers (EMC) m∗ for elec-
trons and holes (in units of electron mass m0) is given by

m∗ = h̄2
[

∂2 E(k)

∂2k

]−1

, (22)

where E(k) are the energy dispersion relation functions described 
by band structures, and h̄ is the reduced Planck constant. Clearly, 
m∗ is inversely proportional to the curvature of the electronic dis-
persion in reciprocal space, implying that CB and VB edges with 
larger dispersions result in smaller effective masses. It is notewor-
thy that the above expression should not be used in non-parabolic 
band dispersion cases, for example, the linear dispersion in the 
7

band edges of graphene [65]. Similarly, the Fermi velocity repre-
sents the group velocity of electrons traveling in the material is 
defined as

v F = 1

h̄

∂ E

∂k
. (23)

Fig. 9 (a) illustrates the determination of effective masses by fit-
ting the band dispersion with a second-order polynomial schemat-
ically. The effective masses of carriers are calculated using an ul-
trafine k-mesh of density uniformly distributed inside a circle of 
radius k-cutoff. Haastrup et al. pointed out that the inclusion of 
third-order terms stabilizes the fitting procedure and yields the 
effective masses that are less sensitive to the details of the em-
ployed k-mesh [53]. Thus, a third-order polynomial is also adopted 
to fit the band energy curvature in the EMC utility. In Table 6 we 
show the calculated effective masses for several typical 2D and 
bulk semiconductors with available effective mass data, including 
Phosphorene [53], MoS2 [53], GaAs [66] and Diamond [67]. Over-
all, the agreement is excellent. In addition, the EMC utility can also 
calculate the orientation-dependent effective masses of charge car-
riers. Examples of this functionality are shown in Fig. 9 (b)-(e). 
One can find that the calculated effective masses of two investi-
gated systems show strong anisotropy, especially for the case of 
bulk Si.

3.5. Charge density and potential manipulation

For spin-polarized systems, the charge density ρ(r) and mag-
netization (spin) density m(r) are defined as

ρ(r) = ρ↑(r) + ρ↓(r)

m(r) = ρ↑(r) − ρ↓(r)
, (24)

where ρ↑(r) and ρ↓(r) are the spin-up and spin-down densities. 
Note that the ρ↑(r) = ρ↓(r) in non-spin-polarized cases. The spin 
density ρσ (r) is expressed as

ρσ (r) =
∑
occ

ϕ∗
iσ (r)ϕiσ (r), (25)

where σ and i are the spin- and band-index, respectively, ϕiσ (r) is 
the normalized single-particle wave-function. occ means that sum-
mation is over all occupied states.

The charge density difference �ρ(r) can track the charge trans-
fer and gain information of the interaction between the two parts 
that constitute the system. The �ρ(r) can be obtained

�ρ(r) = ρAB(r) − ρA(r) − ρB(r), (26)
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Fig. 7. (Color online.) Projected band structure (left panel) and density of states (right panel) of (a) BiClO (P 4/nmm) and (b) graphene monolayers. The Fermi energy is set to 
zero eV.

Fig. 8. (Color online.) The global band structures of the highest valence and lowest conduction bands for (a) MoTe2 (P 6m2) and (b) BiIO (P 4/nmm) monolayers. The Fermi 
energy is set to zero.

Fig. 9. (Color online.) (a) Schematic illustration of the determination of effective masses based on second-order polynomial fitting around the conduction and valence band 
extrema. Orientation-dependent effective masses (in units of electron mass m0) of (b, d) hole and (c, e) electron carriers for 2D BN monolayer (b, c) and bulk Si (d, e) 
respectively.
8
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Table 6
The calculated effective masses of electron me and hole mh carriers (in units of the electron mass m0) for 
typical semiconductors using PBE approach. The masses are labeled by the band extremum and the direction 
of the hight symmetry line along which the mass is calculated using a simple parabolic line fit. The labels of 
high-symmetry points are adopted from the Ref. [34].

Material Direction Electron mass (me) Hole mass (mh)

Our work Literature Our work Literature

Phosphorene � → X (zig-zag) 1.23 1.24 [53] 7.21 6.56 [53]
Phosphorene � → Y (armchair) 0.19 0.14 [53] 0.17 0.13 [53]
MoS2 monolayer K → � 0.47 0.42 [53] 0.56 0.53 [53]
GaAs bulk � → X 0.06 0.07 [66] 0.35 0.34 [66]
Diamond bulk � → X 0.32 0.29 [67] 0.27 0.36 [67]

Fig. 10. (Color online.) Calculated (a) charge density difference, planar- (blue line) and macroscopic averages (red line) of (b) charge density difference, (c) electrostatic 
potential of a GaAs/AlAs (100) heterojunction, and (d) electrostatic potential of a GaAs (110) slab. Ga atoms are shown in purple, As are blue, and Al are red.
where ρA(r), ρB(r) and ρAB(r) are the charge density of reactants 
A and B, and product C. VASPKIT can extract charge-density, spin-
density, electrostatic potential as well as the difference of these 
quantities, and save them in VESTA (.vasp) [15,16,68], XCrysDen 
(.xsf) [31], or Gaussian (.cube) formats [69].

From the three-dimensional electronic charge density and elec-
trostatic potential one can get the average one-dimensional charge 
density n(z) and electrostatic potential V (z) by calculating the pla-
nar average function ( f ) [70]:

f (z) = 1

S

∫
S

V (r)dxdy, (27)

where S represents the area of a unit cell in the x − y plane. Gen-
erally, this planar-averaged charge density and potential exhibit 
periodic oscillations along the z axis due to the spatial distribution 
of the electrons and ionic cores. These oscillations can be removed 
using a macroscopic averaging procedure [70]:
9

f (z) = 1

L

L/2∫
−L/2

f (z)dz, (28)

where L is the length of the period of oscillation along z. By def-
inition, this macroscopic average would produce a constant value 
in the bulk. It is expected to reach a plateau value in the bulk-like 
regions of each layer in the superlattice. As an example, Fig. 10
shows the calculated planar and macroscopic averages of charge 
density difference and electrostatic potential for a (100)-oriented 
GaAs/AlAs heterojunction and a (110)-oriented GaAs slab, respec-
tively.

3.6. Fermi surface

Fermi surface is the surface in reciprocal space which sepa-
rates occupied from unoccupied electron states at zero tempera-
ture [71]. It is defined to be the set of k-points such that E(k) = μ
for any band index n, where μ is the Fermi energy. The shape 
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Fig. 11. (Color online.) (a) Plain Fermi surface of Cu. Orbital-resolved Fermi surface of (b) Cu-s, (c) Cu-p and (d) Cu-d states respectively, visualized by the FermiSurfser 
package [72]. The color denotes the weight of the states.
of the Fermi surface is derived from the periodicity and sym-
metry of the crystalline lattice, and the occupation of electronic 
energy bands. The knowledge of the topology of the Fermi sur-
face is vital for characterizing and predicting the thermal, elec-
tronic and magnetic properties. To calculate the Fermi surface, one 
first needs to use VASPKIT to determine the k-mesh N1×N2×N3
based on the specified k-spacing value. The k-spacing is defined as 
the smallest allowed spacing between the k-points in BZ, that is, 
Ni = max (1, |bi |/kspacing), where |bi | is the length of the recip-
rocal lattice vector in the i − th direction. To reduce the computa-
tional cost, only the eigenvalues at the inequivalent k-points in the 
irreducible Brillouin zone are calculated using VASP. Then these k-
points with the sum of the corresponding weight can be mapped 
to fill the entire BZ using symmetry operations without approxi-
mation during the post-processing. The resulting Fermi surface can 
be visualized using the XcrysDen [31] or FermiSurfser programs 
[72]. To illustrate the capabilities of this utility, the calculated 
Fermi surfaces of copper colored by the atomic orbital projected 
weights are shown in Fig. 11.

3.7. Wave-function visualization

To visualize wave functions, VASPKIT first reads the plane wave 
(PW) coefficients ψnk(k) of the specified wave-vector k-point and 
band-index n from the WAVECAR file, and performs a fast Fourier 
transform (FFT) algorithm to convert the ψnk(k) from the recipro-
cal space to the real space, as denoted by ψnk(r). The ψnk(r) can 
thus be obtained

ψnk(r) =
∑

G

Cnk(k + G)ei(k+G)·r, (29)

where G is the reciprocal lattice vector, and Cnk(k + G) is the PW
coefficient of the wave vector k + G and band-index n in reciprocal 
space. Examples of the calculated wave function plots in real space 
are shown in Fig. 12.

3.8. Band structure unfolding

The electronic structures of materials are perturbed by struc-
tural defects, impurities, fluctuations of the chemical composition, 
etc. In DFT calculations, these defects and incommensurate struc-
tures are usually investigated by using SC models. Nevertheless, it 
is difficult to compare the SC band structure directly with the PC 
band structure due to the folding of the bands into the smaller 
SC Brillouin zone (SBZ). Popescu and Zunger proposed the effec-
tive band structures (EBS) method which can unfold the SC band 
structures into the corresponding PC Brillouin zone (pbz) [73,74]. 
Such a delicate technique greatly simplifies the analysis of the re-
sults and enables direct comparisons with electronic structures of 
pristine materials.
10
Fig. 12. (Color online.) Calculated isosurfaces of wave functions in real space for 
(a) CO molecule, (b) VBM and (c) CBM for graphene respectively, visualized by the 
VESTA package [68].

As aforementioned, the SC and PC lattice vectors satisfy A =
M · a, where A and a are the lattice vectors of SC and PC. The el-
ements of transformation matrix M are integers 

(
mij ∈Z

)
when 

building SC from PC. In the band unfolding utility, the transfor-
mation matrix is not required to be diagonal. In other words, the 
SC and PC lattice vectors do not need to be collinear. Following 
a general convention, capital and lower case letters indicate the 
quantities in the SC and PC, respectively, unless otherwise stated. 
A similar relation holds in reciprocal space:

B = (
M−1)T · b, (30)

where B and b are the reciprocal lattice vectors of the SC and PC, 
respectively. The reciprocal lattice vectors gn (Gm) in the pbz (SBZ) 
are expressed as

gn = ∑
i nibi, ni ∈Z

Gm = ∑
i miBi, mi ∈Z

,

where {gn} ⊂ {Gm}, i.e., every reciprocal lattice vector of the pbz is 
also one of the SBZ.

For a given k in pbz, there is a K in the SBZ, and the two vec-
tors are related by a reciprocal lattice vector G in the SBZ:

k = K + Gi, i = 1, . . . , NK, (31)

where NK is the determinant |M| that determines the multiplicity 
of the SC. When choosing plane waves as the basis functions, the
projection of the SC eigenstates |ψSC

mK〉 on the PC eigenstates |ψPC
nk 〉

is given by the spectra weight PKm [73,74]:
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Fig. 13. (Color online.) (a) Workflow of the algorithm used in the band unfolding 
utility. (b) Band structure of 3 × 3 graphene SC along with the high-symmetry di-
rections in pbz. The blue lines and red makers represent the band structure before 
and after applying the unfolding technique. The Fermi energy is set to zero.

PKm (ki) =
∑

n

∣∣∣〈ψSC
mK | ψPC

nk

〉∣∣∣2 =
∑

g

|CmK (g + ki − K)|2

=
∑

g

|CmK (g + Gi)|2 ,

(32)

where m and n stand for band indices at vectors K and ki in the 
reciprocal space of the SC and PC, respectively. CmK is the PW co-
efficients given by Eq. (29) that span the eigenstates of the SC. This 
implies that the required information about the PC is the recipro-
cal lattice vectors of the primitive cell g only, and the knowledge 
of the PC eigenstates is not necessary. All the filtered CmK

(
g + G j

)
coefficients only contribute to the spectral function. The quantity 
PKm represents the amount of Bloch character ki preserved in 
|ψPC

nk 〉 at the same energy En = Em .
The workflow of band unfolding utility is schematically shown 

in Fig. 13(a). Three input files including the information of SC 
structure, the transformation matrix M, and the selected ki vec-
tors in pbz are required to provide respectively. To compare the 
unfolded band structure of SC with the band structure of PC di-
rectly, the ki vectors are generally sampled along with the high-
symmetry directions in pbz and then translated in the SC recipro-
cal space by the transformation as described in Eq. (33)

K = M · ki, (33)

where K and ki are the scaled coordinates with respect to the SC 
and PC reciprocal basis vectors, respectively. After reading PW co-
efficients and eigenvalue of each state from the WAVECAR obtained 
by performing VASP calculation, the intricate supercell states can 
be unfolded back into the larger pbz by applying the unfolding 
technique via Eq. (32). Finally, the unfolded band can be visualized 
with the maker size proportional to the spectral weight PKm . From 
Fig. 13(b), it is clear that folding the bands into the smaller SBZ 
gives rise to quite a sophisticated band structure. In contrast, one 
can gain more straightforward analysis once the supercell states 
are unfolded into the pbz despite the equivalence between the PC 
and the SC descriptions of a perfectly periodic material.

It is well known that intrinsic defects (vacancies, self-interstiti-
als, and antisites) and unintentional impurities have important ef-
fects on the properties of semiconductors. As a typical case, we 
take the 4×3 MoS2 monolayer SC with one neutral sulfur vacancy 
to demonstrate the role of intrinsic defect on the electronic struc-
ture of the pristine host. The calculated effective band structures 
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of pristine and defective MoS2 supercells in Fig. 14 (a) and (b), 
respectively. By comparing these two, one can find two nearly de-
generated defect states existing in the fundamental band gap of 
MoS2. The orbital-resolved unfold band structures as shown in
Figs. (c) and (d) further demonstrate that these two defect states 
are mainly derived from Mo-d and S-p states respectively. Fur-
thermore, the Bloch character close to the valence band edge is 
perturbed due to the presence of the sulfur vacancy.

3.9. Linear optical properties

The linear optical properties of semiconductors can be obtained 
from the frequency-dependent complex dielectric function ε(ω)

ε(ω) = ε1(ω) + iε2(ω), (34)

where ε1(ω) and ε2(ω) are the real and imaginary parts of the 
dielectric function, and ω is the photon frequency. Within the one-
electron picture, the imaginary part of the dielectric function ε2(ω)

is obtained from the following equation [75]:

ε2(ω) =4π2e2

�
lim
q→0

1

q2

×
∑
c,v,k

2wkδ (Ec − E v − ω) |〈c|e · q|v〉|2,
(35)

where 〈c|e · q|v〉 is the integrated optical transitions from the va-
lence states (v) to the conduction states (c), e is the polarization 
direction of the photon and q is the electron momentum operator. 
The integration over k is performed by summation over special k-
points with a corresponding weighting factor wk . The real part of 
the dielectric function ε1(ω) can be determined from the Kramers-
Kronig relation given by

ε1(ω) = 1 + 2

π
P

∞∫
0

ε2
(
ω′)ω′

ω′2 − ω2 + iη
dω′, (36)

where P denotes the principle value and η is the complex shift 
parameter. The frequency-dependent linear optical spectra, e.g., re-
fractive index n(ω), extinction coefficient κ(ω), absorption coeffi-
cient α(ω), energy-loss function L(ω), and reflectivity R(ω) can be 
calculated from the real ε1(ω) and the imaginary ε2(ω) parts [76]:

n(ω) =
⎛
⎜⎝

√
ε2

1 + ε2
2 + ε1

2

⎞
⎟⎠

1
2

, (37)

k(ω) =
⎛
⎜⎝

√
ε2

1 + ε2
2 − ε1

2

⎞
⎟⎠

1
2

, (38)

α(ω) =
√

2ω

c

(√
ε2

1 + ε2
2 − ε1

) 1
2

, (39)

L(ω) = Im

( −1

ε(ω)

)
= ε2

ε2
1 + ε2

2

, (40)

R(ω) = (n − 1)2 + k2

(n + 1)2 + k2
. (41)

In Fig. 15 we present the linear optical spectra of silicon as de-
termined by solving the Bethe-Salpeter Equation (BSE) on the top 
of G0W0 approximation. One can find that the absorption coeffi-
cient becomes significant only after 3.0 eV. This is because silicon 
has an indirect band gap, resulting in a low absorption coefficient 
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Fig. 14. (Color online.) Effective band structure of 4 × 3 MoS2 SC unfolded into the PC Brillouin zone through Eq. (32) (a) without and (b) with a S vacancy. Orbital-resolved 
effective band structure of (c) S-p and (d) Mo-d states in the defective SC. The Fermi energy is set to zero.
Fig. 15. (Color online.) G0W0-BSE calculated (a) absorption coefficient, (b) refractive 
index, (c) reflectivity and (d) extinction coefficient of silicon. Vertical color lines 
highlight the visible light region.

in the visible region. Since the GW approximation includes the ex-
change and correlation effects in a self-energy term dependent on 
the one-particle Green’s function G and the dynamically screened 
Coulomb interaction W, it can correct the one electron eigenvalues 
obtained from DFT within a many-body quasiparticle framework 
[77,78]. Furthermore, the errors originated from the lack of ladder 
diagrams in determining W can be included through the solution 
of the Bethe-Salpeter equation (BSE) [79]. It could be expected that 
the GW-BSE calculated optical properties yield better agreement 
with the experiment. In the single-shot G0W0 approximation, the 
one-electron Green’s function G is self-consistently updated within 
a single iteration, while the screened Coulomb interaction W is 
fixed at its initial value.

It should be pointed out that the Eqs. (37)-(41) are not well-
defined for low-dimensional materials since the dielectric function 
is not straightforward and depends on the thickness of the vacuum 
layer when the low-dimensional systems are simulated using a pe-
riodic stack of layers with sufficiently large interlayer distance L to 
avoid artificial interactions between the periodic images of the 2D 
sheet crystals in the standard DFT calculations [80,81]. To avoid the 
thickness problem, the optical conductivity σ2D (ω) is used to char-
acterize the optical properties of 2D sheets. Based on the Maxwell 
equation, the 3D optical conductivity can be expressed as [82]
12
σ3D(ω) = i[1 − ε(ω)]ε0ω, (42)

where ε(ω) is the frequency-dependent complex dielectric func-
tion given in (34), ε0 is the permittivity of vacuum and ω is the 
frequency of the incident wave. The in-plane 2D optical conduc-
tivity is directly related to the corresponding σ3D(ω) component 
through the equation [82,83]

σ2D(ω) = Lσ3D(ω), (43)

where L is the slab thickness in the simulation cell. The normal-
ized reflectance R(ω), transmittance T (ω) and absorbance A(ω)

are independent of the light polarization for a freestanding 2D 
crystal sheet when normal incidence is assumed [82,83],

R =
∣∣∣∣ σ̃ /2

1 + σ̃ /2

∣∣∣∣
2

,

T = 1

|1 + σ̃ /2|2 ,

A = Re σ̃

|1 + σ̃ /2|2 ,

(44)

where σ̃ (ω) = σ2D(ω)/ε0c is the normalized conductivity (c is 
the speed of light). Since the interband contribution is only con-
sidered, the formula (44) is valid for semiconducting and insu-
lating 2D crystals with a restriction of A + T + R = 1. Gener-
ally, the reflectance of 2D sheets is extremely small, and the ab-
sorbance can be approximated by the real part of σ̃ (ω), namely, 
A(ω) = Reσ2D(ω)/ε0c. To demonstrate this functionality, the PBE-
calculated linear optical spectra of freestanding graphene and 
phosphorene monolayers are displayed in Fig. 16. Our results are 
in good agreement with the available theoretical optical curves 
[82–84].

3.10. Joint density of states

For a semiconductor, the optical absorption in direct band-to-
band transitions is proportional to [85]

2π

h̄

∫
BZ

∣∣〈v ∣∣H′∣∣ c
〉∣∣2 2

(2π)3
δ (Ec(k) − E v(k) − h̄ω)d3k, (45)

where H′ is the perturbation associated with the light wave and 〈
v

∣∣H′∣∣ c
〉

is the transition matrix from states in the valence band 
(VB) to states in the conduction band (CB); δ is the Dirac delta 
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Fig. 16. (Color online.) Real (blue line) and imaginary (red line) parts of frequency-
dependent optical conductivity σ2D (ω) for (a) graphene and (c) phosphorene [in 
units of σ0 = e2/(4h̄)]. Absorption spectra A(ω) of (b) graphene and (d) phos-
phorene. The incident light polarized along the armchair and zigzag directions of 
phosphorene are presented by solid and dashed lines respectively. Vertical color 
lines highlight the visible light region.

function which switches on this contribution when a transition oc-
curs from one state to another, i.e., Ec(k) − E v(k) = h̄ω. Factor 2 
stems from the spin degeneracy. The integration is over the entire 
BZ. The matrix elements vary little within the BZ. Therefore, we 
can pull these out in front of the integral and obtain

2π

�h̄

∣∣〈v ∣∣H′∣∣ c
〉∣∣2 ·

∫
2�

(2π)3
δ (Ec(k) − E v(k) − h̄ω)d3k, (46)

where � is the volume of the lattice cell, and the factor �/(2π)3

normalizes the k vector density within the Brillouin zone. The sec-
ond term is the joint density of states (JDOS). After sum over all 
states within the first Brillouin zone and all possible transitions 
initiated by photons with a certain energy h̄ω between valence 
and conduction bands, we obtain

j(ω) =
∑
v,c

�

4π3

∫
δ (Ec(k) − E v(k) − h̄ω)d3k

= 2
∑
v,c,k

wkδ (Ec(k) − E v(k) − h̄ω) ,
(47)

where c and v belong respectively to the valence and conduction 
bands, E(k) are the eigenvalues of the Hamiltonian, and wk are 
weighting factors. The Dirac Delta function in Eq. (47) can be nu-
merically approximated using a normalized Gaussian function:

G(ω) = 1

σ
√

2π
e−(

Ek,n′−Ek,n−h̄ω
)2

/2σ 2
, (48)

where σ is the broadening parameter. To demonstrate this func-
tionality, we show the calculated total and partial JDOS for 
CH3NH3PbI3 and Si in Fig. 17. The calculated JDOS for CH3NH3PbI3
is in excellent agreement with previous data [86]. It should be 
pointed that the total JDOS includes all possible interband transi-
tions from all the valence to all the conduction bands according 
to Eq. (47); while the partial JDOS considers only the interband 
transitions from the highest VB to the lowest CB.

3.11. Transition dipole moment

The transition dipole moment (TDM) or dipole transition matrix 
elements Pa→b , is the electric dipole moment associated with a 
transition between the initial state a and the final state b [87]:
13
Fig. 17. (Color online.) Calculated joint density of states for (a) CH3NH3PbI3 and 
(b) Si. Blue and purple lines represent the total and partial joint density of states 
respectively. The visible light region is highlighted by vertical color lines.

Fig. 18. (Color online.) Calculated band structure (top panel) and transition dipole 
moment (bottom panel) for (a) Cs2AgInCl6 and (b) Cs2InBiCl6.

Pa→b = 〈ψb|r|ψa〉 = ih̄

(Eb − Ea)m
〈ψb|p|ψa〉 , (49)

where ψa and ψb are energy eigenstates with energy Ea and Eb; m
is the mass of the electron. In general the TDM is a complex vec-
tor that includes the phase factors associated with the two states. 
Its direction gives the polarization of the transition, which deter-
mines how the system will interact with an electromagnetic wave 
of a given polarization, while the sum of the squares of TDM, P2, 
gives the transition probabilities between the two states. In Fig. 18
we provide some specific examples to illustrate its use. It is seen 
that the calculated TDM amplitude is zero for transition between 
the CBM and VBM at the � point in Cs2AgInCl6, implying no op-
tical absorption between these two states. On the other hand, the 
excellent optical absorption between CBM and VBM is predicted in 
Cs2InBiCl6 when Bi substitues Ag atom. These findings are in good 
agreement with previous theoretical results [88].

3.12. d-Band center

The d-band center model of Hammer and Nørskov is widely 
used in understanding and predicting catalytic activity on transi-
tion metal surfaces. The main idea underlying the theory is that 
the binding energy of an adsorbate to a metal surface is largely 
dependent on the electronic structure of the surface itself. In this 
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model, the d-states band participating in the interaction is approx-
imated by the center of the d-band εd [89]:

εd =
∫ ∞
−∞ nd(ε)εdε∫ ∞
−∞ nd(ε)dε

, (50)

where nd and ε are projected-DOS and energy of transition metal 
d-states. According to this model, the adsorption energy on the 
transition metal surface correlates with the upward shift of the d-
band center with respect to the Fermi energy. A more vital upward 
shift indicates the possibility of forming a more significant number 
of empty anti-bonding states, leading to a stronger binding energy 
[90,91,89]. It may be worth mentioning here that the d-band cen-
ter position linearly upshifts with increasing the number of empty 
states above the Fermi level. Therefore, one can specify the inte-
gral upper limit in Eq. (50) to calculate d-band center by using 
VASPKIT.

3.13. Thermo energy correction

Gibbs free energy plays a crucial role in catalysis reaction. 
The equations used to calculate thermochemical data for gases in 
VASPKIT are equivalent to those in the Gaussian program [92,93]. 
The Gibbs free energy G is given by

G = H − T S, (51)

where H , T and S represent enthalpy, temperature and entropy, 
respectively. The enthalpy H in Eq. (51) can be written as H =
U + P V . Both internal thermal energy U and entropy S have in-
cluded the contributions from translational, electronic, rotational 
and vibrational motions and zero-point energy (ZPE) of molecules. 
Moreover, to calculate correctly when the number of moles (la-
beled N) of a gas changes during the course of a reaction, the 
Gibbs free energy has also included �P V = �N RT , where R is the 
molar gas constant. It is worth mentioning that only the modes 
with real vibrational frequencies are considered and the model 
with imaginary one are ignored during the calculations of the vi-
bration contributions. Specifically, for linear (non-linear) molecules 
containing n atoms, the degree of vibrational freedom is 3n - 5 (3n
- 6). VASPKIT neglects the smallest 5 (6) frequencies. We take oxy-
gen molecular as an example to calculate its free energy at 298.15 
K using the corrected algorithm mentioned above. It is found that 
the calculated correction to free energy of O2 molecule is -0.4467 
eV, which is very close to the experimental data of -0.4468 eV 
at 298.15 K and normal atmospheric pressure [94]. Moreover, the 
thermal correction result from VASPKIT is exactly the same with 
that from Gaussian program by setting the same molecular struc-
ture and frequencies.

Unlike gas molecules, when the adsorbed molecules form 
chemical bonds with the substrate, their translational and rota-
tional freedom will be constrained. Consequently, the contributions 
from translation and rotation to entropy and enthalpy are signifi-
cantly reduced turn into vibrational modes. One standard method 
is to attribute the translational or rotational part of the contribu-
tion to vibration, that is, the 3n vibrations of the surface-adsorbing 
molecules (except the imaginary frequency) are all used to cal-
culate the correction of the thermo energy [89]. Considering that 
a minor vibration mode makes a significant contribution to en-
tropy. A minor vibration frequency will likely lead to abnormal 
entropy and free energy correction. Thus, VASPKIT allows specify-
ing a threshold value which defines the lower limit of frequencies. 
For example, if a threshold value of 50 cm−1 is adopted, implying 
that the frequencies below 50 cm−1 are approximately equal to 50 
cm−1 during the calculations of the vibration contributions to the 
adsorbed molecular free energy correction.
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3.14. Molecular dynamics

Molecular dynamics (MD) describes how the atoms in a mate-
rial move as a function of time, and helps us to understand the 
structural, dynamical and thermodynamical properties of complex 
systems. It has been successfully applied to gases, liquids, and or-
dered and disordered solids. In addition to the equation of state, 
mean square displacement (MSD), velocity auto-correlation func-
tion (VACF), phonon vibrational density of states (VDOS) and pair 
correlation function (PCF) are the most critical quantities enabling 
us to determine various properties of interest in MD simulations.

The MSD is a measure of the deviation of the position of a par-
ticle with respect to a reference position over time. It can help 
to determine whether the ion is freely diffusing, transported, or 
bound. It is defined as

M S D(m) = 1

Nparticles

Nparticles∑
i=1

1

N − m

N−m−1∑
k=0

(ri(k + m) − ri(k))2 ,

(52)

where ri(t) is the position of atom i after t time of simulation. 
Nparticles and N are the total number of atoms and total frames 
respectively. According to this definition, the MSD is averaged over 
all windows of length m and over all selected particles. An alterna-
tive method that can efficiently calculate MSD was proposed based 
on the Fast Fourier Transform (FFT) algorithm in Refs. [95,96] and 
references therein. If the system stays in the solid state, the MSD 
oscillates around a constant value. This means that all the atoms 
are confined to specific positions. However, for a liquid, atoms will 
move indefinitely and the MSD continues to increase linearly with 
time. This implies that sudden changes in the MSD with time indi-
cate melting, solidification, phase transition, and so on. In addition, 
the calculation of MSD is the standard way to estimate the pa-
rameters of movement, such as the diffusion coefficients from MD 
simulations.

The VACF is another way of checking the movement type of 
atoms. It is a value that basically tells until when the particle 
remembers its previous movements. Like the MSD, it is a time-
averaged value, defined over a delay domain. The normalized VACF 
is defined as

c(t) =
∑N

i=1 〈vi(t) · vi(0)〉∑N
i=1 (vi(0))2

, (53)

where vi(t) is the velocity of the i-th atom at time t . The bracket 
represents a time average over the history of the particle, i.e., all 
the values of t. The total velocity autocorrelation function C(t) is 
defined as the mass-weighted sum of the atom velocity autocorre-
lation functions [97]

C(t) =
N∑

j=1

m jc j(t), (54)

where c j(t) is the velocity autocorrelation of atom j. The opti-
cal and thermodynamical properties of materials depend on VDOS 
which can be obtained from the Fourier transform of the VACF un-
der the harmonic approximation [98,97],

f (ω) = F[γ (t)] = 1

kB T

∞∫
−∞

γ (t)e−iωtdt, (55)

where ω is the vibrational frequency, F is the Fourier transform 
operator, kB is the Boltzmann constant and T is the absolute tem-
perature.
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Fig. 19. (Color online.) Calculated (a) MSD, (b) VACF, (c) VDOS and (d) PCF of liquid 
water at 400 K obtained from MD simulations.

The PCF g(r) describes how atoms are distributed in a thin shell 
at a radius r from an arbitrary atom in the material. It is useful not 
only for studying the details of the system but also to obtain ac-
curate values for the macroscopic quantities such as the potential 
energy and pressure. This quantity can be obtained by summing 
the number of atoms found at a given distance in all directions 
from a particular atom:

g(r) = dN/N

dV /V
= 1

4πr2

1

Nρ

N∑
i=1

N∑
j �=i

〈
δ
(
r − ∣∣ri − r j

∣∣)〉 , (56)

where r is the radial distance. ρ is the average density of the en-
tire material. The normalization via the density ensures that for 
large distances the radial distribution approaches unity. The partial 
radial distribution between two elements is calculated as

g AB(r) = 1

4πr2

N

ρN A NB

∑
i∈A

N∑
j∈B, j �=i

〈
δ
(
r − ∣∣ri − r j

∣∣)〉 . (57)

As an illustrated example, Fig. 19 shows the PBE-calculated 
MSD, VACF, VDOS and PCF for liquid water at 400 K processed 
by the MD utility. Overall, our result is in good agreement with 
available experimental and theoretical results [99,100].

4. High-throughput capabilities

VASPKIT also provides a light-weight high-throughput interface. 
As such it can advantageously be part of bash scripts, taking full 
advantage of bash capabilities (variables, loops, conditions, etc.) 
to batch performing pre- and post-processing. An easy-to-follow 
user manual is available at https://vaspkit .com /tutorials .html. The 
syntax is designed as simply as possible. For instance, to generate 
KPOINTS files in a series of subfolders, the syntax is

for dir in ∗
do

echo $dir
cd $RootPath / $dir
vaspkit −task 102 −kpr 0.04

done

5. Limitations and future capabilities

Currently, VASPKIT only deals with the raw data calculated us-
ing the VASP code. This program will be extended to support other 
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ab-initio packages in the future version. In addition, the data visu-
alization and plotting utility based on Python and Matplotlib will 
be also implemented.

6. Summary

In summary, VASPKIT is a user-friendly toolkit that can be eas-
ily employed to perform initial setup for calculations and post-
processing analysis to derive many material properties from the 
raw data generated by VASP code. We have demonstrated its capa-
bility through illustrative examples. VASPKIT provides a command-
line interface to perform high-throughput calculations. It remains 
under development, and further functionality, including closer sup-
port for other codes, is readily to be implemented. With new fea-
tures being added, we hope that VASPKIT will become an even 
more attractive toolkit contributing to efficient development and 
utilization of electronic structure theory.
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Appendix A. Elastic stiffness tensor matrix and strain modes for 
bulk crystal systems

1. Triclinic system (space group numbers: 1-2)

There are 21 independent elastic constants. C11, C12, C13, C14, 
C15, C16, C22, C23, C24, C25, C26, C33, C34, C35, C36, C44, C45, C46, 
C55, C56 and C66. (See Table A.1.)

The elastic stiffness tensor matrix is expressed by

Cij =

⎛
⎜⎜⎜⎜⎜⎝

C11 C12 C13 C14 C15 C16
C12 C22 C23 C24 C25 C26
C13 C23 C33 C34 C35 C36
C14 C24 C34 C44 C45 C46
C15 C25 C35 C45 C55 C56
C16 C26 C36 C46 C56 C66

⎞
⎟⎟⎟⎟⎟⎠

. (A.1)

2. Monoclinic system (space group numbers: 3-15)

There are 13 independent elastic constants: C11, C12, C13, C15, 
C22, C23, C25, C33, C35, C44, C46, C55 and C66. (See Table A.2.)

The elastic stiffness tensor matrix is expressed by

Cij =

⎛
⎜⎜⎜⎜⎜⎝

C11 C12 C13 0 C15 0
C12 C22 C23 0 C25 0
C13 C23 C33 0 C35 0
0 0 0 C44 0 C46

C15 C25 C35 0 C55 0
0 0 0 0 C46 C66

⎞
⎟⎟⎟⎟⎟⎠

. (A.2)

https://vaspkit.com/tutorials.html
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Table A.1
List of strain modes and the derived elastic constants for triclinic system used in 
VASPKIT based on energy-strain approach.

Strain index Strain vector ε Elastic energy �E
V

1 (δ,0,0,0,0,0) 1
2 C11δ2

2 (0, δ,0,0,0,0) 1
2 C22δ2

3 (0,0, δ,0,0,0) 1
2 C33δ2

4 (0,0,0, δ,0,0) 1
2 C44δ2

5 (0,0,0,0, δ,0) 1
2 C55δ2

6 (0,0,0,0,0, δ) 1
2 C66δ2

7 (δ, δ,0,0,0,0)
(

C11
2 + C12 + C22

2

)
δ2

8 (δ,0, δ,0,0,0)
(

C11
2 + C13 + C33

2

)
δ2

9 (δ,0,0, δ,0,0)
(

C11
2 + C14 + C44

2

)
δ2

10 (δ,0,0,0, δ,0)
(

C11
2 + C15 + C55

2

)
δ2

11 (δ,0,0,0,0, δ)
(

C11
2 + C16 + C66

2

)
δ2

12 (0, δ, δ,0,0,0)
(

C22
2 + C23 + C33

2

)
δ2

13 (0, δ,0, δ,0,0)
(

C22
2 + C24 + C44

2

)
δ2

14 (0, δ,0,0, δ,0)
(

C22
2 + C25 + C55

2

)
δ2

15 (0, δ,0,0,0, δ)
(

C22
2 + C26 + C66

2

)
δ2

16 (0,0, δ, δ,0,0)
(

C33
2 + C34 + C44

2

)
δ2

17 (0,0, δ,0, δ,0)
(

C33
2 + C35 + C55

2

)
δ2

18 (0,0, δ,0,0, δ)
(

C33
2 + C36 + C66

2

)
δ2

19 (0,0,0, δ, δ,0)
(

C44
2 + C45 + C55

2

)
δ2

20 (0,0,0, δ,0, δ)
(

C44
2 + C46 + C66

2

)
δ2

21 (0,0,0,0, δ, δ)
(

C55
2 + C56 + C66

2

)
δ2

Table A.2
List of strain modes and the derived elastic constants for monoclinic system used 
in VASPKIT based on energy-strain approach.

Strain index Strain vector ε Elastic energy �E
V

1 (δ,0,0,0,0,0) 1
2 C11δ2

2 (0, δ,0,0,0,0) 1
2 C22δ2

3 (0,0, δ,0,0,0) 1
2 C33δ2

4 (0,0,0, δ,0,0) 1
2 C44δ2

5 (0,0,0,0, δ,0) 1
2 C55δ2

6 (0,0,0,0,0, δ) 1
2 C66δ2

7 (δ, δ,0,0,0,0)
(

C11
2 + C12 + C22

2

)
δ2

8 (δ,0, δ,0,0,0)
(

C11
2 + C13 + C33

2

)
δ2

9 (δ,0,0,0, δ,0)
(

C11
2 + C15 + C55

2

)
δ2

10 (0, δ, δ,0,0,0)
(

C22
2 + C23 + C33

2

)
δ2

11 (0, δ,0,0, δ,0)
(

C22
2 + C25 + C55

2

)
δ2

12 (0,0, δ,0, δ,0)
(

C33
2 + C35 + C55

2

)
δ2

13 (0,0,0, δ,0, δ)
(

C44
2 + C46 + C66

2

)
δ2

3. Orthorhombic system (space group numbers: 16-74)

There are 9 independent elastic constants: C11, C12, C13, C22, 
C23, C33, C44, C55 and C66. (See Table A.3.)

The elastic stiffness tensor matrix is expressed by

Cij =

⎛
⎜⎜⎜⎜⎜⎝

C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

⎞
⎟⎟⎟⎟⎟⎠

. (A.3)

4. Tetragonal II system (space group numbers: 75-88)

There are 7 independent elastic constants: C11, C12, C13, C16, 
C33, C44 and C66. (See Table A.4.)
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Table A.3
List of strain modes and the derived elastic constants for orthorhombic system 
used in VASPKIT based on energy-strain approach.

Strain index Strain vector ε Elastic energy �E
V

1 (δ,0,0,0,0,0) 1
2 C11δ2

2 (0, δ,0,0,0,0) 1
2 C22δ2

3 (0,0, δ,0,0,0) 1
2 C33δ2

4 (0,0,0, δ,0,0) 1
2 C44δ2

5 (0,0,0,0, δ,0) 1
2 C55δ2

6 (0,0,0,0,0, δ) 1
2 C66δ2

7 (δ, δ,0,0,0,0)
(

C11
2 + C12 + C22

2

)
δ2

8 (δ,0, δ,0,0,0)
(

C11
2 + C13 + C33

2

)
δ2

9 (0, δ, δ,0,0,0)
(

C22
2 + C23 + C33

2

)
δ2

Table A.4
List of strain modes and the derived elastic constants for tetragonal II system used 
in VASPKIT based on energy-strain approach.

Strain index Strain vector ε Elastic energy �E
V

1 (δ, δ,0,0,0,0) (C11 + C12)δ2

2 (0,0,0,0,0, δ) 1
2 C66δ2

3 (0,0, δ,0,0,0) 1
2 C33δ2

4 (0,0,0, δ, δ,0) C44δ2

5 (δ, δ, δ,0,0,0)
(

C11 + C12 + 2C13 + C33
2

)
δ2

6 (0, δ, δ,0,0,0)
(

C11
2 + C13 + C33

2

)
δ2

7 (δ,0,0,0,0, δ)
(

C11
2 + C16 + C66

2

)
δ2

Table A.5
List of strain modes and the derived elastic constants for tetragonal I system used 
in VASPKIT based on energy-strain approach.

Strain index Strain vector ε Elastic energy �E
V

1 (δ, δ,0,0,0,0) (C11 + C12)δ2

2 (0,0,0,0,0, δ) 1
2 C66δ2

3 (0,0, δ,0,0,0) 1
2 C33δ2

4 (0,0,0, δ, δ,0) C44δ2

5 (δ, δ, δ,0,0,0)
(

C11 + C12 + 2C13 + C33
2

)
δ2

6 (0, δ, δ,0,0,0)
(

C11
2 + C13 + C33

2

)
δ2

The elastic stiffness tensor matrix is expressed by

Cij =

⎛
⎜⎜⎜⎜⎜⎝

C11 C12 C13 0 0 C16
C12 C11 C13 0 0 −C16
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0

C16 −C16 0 0 0 C66

⎞
⎟⎟⎟⎟⎟⎠

. (A.4)

5. Tetragonal I system (space group numbers: 89-142)

There are 6 independent elastic constants: C11, C12, C13, C33, 
C44 and C66. (See Table A.5.)

The elastic stiffness tensor matrix is expressed by

Cij =

⎛
⎜⎜⎜⎜⎜⎝

C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C66

⎞
⎟⎟⎟⎟⎟⎠

. (A.5)

6. Trigonal II system (space group numbers: 143-148)

There are 7 independent elastic constants: C11, C12, C13, C14, 
C15, C33 and C44. (See Table A.6.)
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Table A.6
List of strain modes and the derived elastic constants for trigonal II system used in 
VASPKIT based on energy-strain approach.

Strain index Strain vector ε Elastic energy �E
V

1 (δ, δ,0,0,0,0) (C11 + C12)δ2

2 (0,0,0,0,0, δ) 1
4 (C11 − C12) δ2

3 (0,0, δ,0,0,0) 1
2 C33δ2

4 (0,0,0, δ, δ,0) C44δ2

5 (δ, δ, δ,0,0,0)
(

C11 + C12 + 2C13 + C33
2

)
δ2

6 (0,0,0,0, δ, δ)
(

C11
4 − C12

4 + C14 + C44
2

)
δ2

7 (0,0,0, δ,0, δ)
(

C11
4 − C12

4 − C15 + C44
2

)
δ2

Table A.7
List of strain modes and the derived elastic constants for trigonal I system used in 
VASPKIT based on energy-strain approach.

Strain index Strain vector ε Elastic energy �E
V

1 (δ, δ,0,0,0,0) (C11 + C12)δ2

2 (0,0,0,0,0, δ) 1
4 (C11 − C12) δ2

3 (0,0, δ,0,0,0) 1
2 C33δ2

4 (0,0,0, δ, δ,0) C44δ2

5 (δ, δ, δ,0,0,0)
(

C11 + C12 + 2C13 + C33
2

)
δ2

6 (0,0,0,0, δ, δ)
(

C11
4 − C12

4 + C14 + C44
2

)
δ2

The elastic stiffness tensor matrix is expressed by

Cij =

⎛
⎜⎜⎜⎜⎜⎜⎝

C11 C12 C13 C14 C15 0
C12 C11 C13 −C14 −C15 0
C13 C13 C33 0 0 0
C14 −C14 0 C44 0 −C15
C15 −C15 0 0 C44 C14

0 0 0 −C15 C14
C11−C12

2

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A.6)

7. Trigonal I system (space group numbers: 149-167)

There are 6 independent elastic constants: C11, C12, C13, C14, 
C33 and C44. (See Table A.7.)

The elastic stiffness tensor matrix is expressed by

Cij =

⎛
⎜⎜⎜⎜⎜⎜⎝

C11 C12 C13 C14 0 0
C12 C11 C13 −C14 0 0
C13 C13 C33 0 0 0
C14 −C14 0 C44 0 0
0 0 0 0 C44 C14

0 0 0 0 C14
C11−C12

2

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A.7)

8. Hexagonal system (space group numbers: 168–194)

There are 5 independent elastic constants: C11, C12, C13, C33
and C44. (See Table A.8.)

The elastic stiffness tensor matrix is expressed by

Cij =

⎛
⎜⎜⎜⎜⎜⎜⎝

C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C11−C12

2

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A.8)

9. Cubic system (space group numbers: 195–230)

There are 3 independent elastic constants: C11, C12 and C44. 
(See Table A.9.)
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Table A.8
List of strain modes and the derived elastic constants for hexagonal system used in 
VASPKIT based on energy-strain approach.

Strain index Strain vector ε Elastic energy �E
V

1 (δ, δ,0,0,0,0) (C11 + C12)δ2

2 (0,0,0,0,0, δ) 1
4 (C11 − C12) δ2

3 (0,0, δ,0,0,0) 1
2 C33δ2

4 (0,0,0, δ, δ,0) C44δ2

5 (δ, δ, δ,0,0,0)
(

C11 + C12 + 2C13 + C33
2

)
δ2

Table A.9
List of strain modes and the derived elastic constants for cubic system used in 
VASPKIT based on energy-strain approach.

Strain index Strain vector ε Elastic energy �E
V

1 (0,0,0, δ, δ, δ) 3
2 C44δ2

2 (δ, δ,0,0,0,0) (C11 + C12)δ2

3 (δ, δ, δ,0,0,0) 3
2 (C11 + 2C12)δ2

The elastic stiffness tensor matrix is expressed by

Cij =

⎛
⎜⎜⎜⎜⎜⎝

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

⎞
⎟⎟⎟⎟⎟⎠

. (A.9)

Appendix B. Elastic stiffness tensor matrix and strain modes for 
2D crystal systems

1. 2D oblique system

There are 6 independent elastic constants: C11, C12, C16, C22, 
C26 and C66. (See Table B.1.)

Cij =
⎛
⎝ C11 C12 C16

C12 C22 C26
C16 C26 C66

⎞
⎠ (B.1)

2. 2D rectangular system

There are 4 independent elastic constants: C11, C12, C22 and 
C66. (See Table B.2.)

Cij =
⎛
⎝ C11 C12 0

C12 C22 0
0 0 C66

⎞
⎠ (B.2)

3. 2D square system

Table B.1
List of strain modes and the derived elastic constants for 2D oblique system used 
in VASPKIT based on energy-strain approach.

Strain index Strain vector ε Elastic energy �E
V

1 (δ,0,0) 1
2 C11δ2

2 (0, δ,0) 1
2 C22δ2

3 (0,0, δ) 1
2 C66δ2

4 (δ, δ,0)
(

C11
2 + C12 + C22

2

)
δ2

5 (δ,0, δ)
(

C11
2 + C16 + C66

2

)
δ2

6 (0, δ, δ)
(

C22
2 + C26 + C66

2

)
δ2
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Table B.2
List of strain modes and the derived elastic constants for 2D rectangular system 
used in VASPKIT based on energy-strain approach.

Strain index Strain vector ε Elastic energy �E
V

1 (δ,0,0) 1
2 C11δ2

2 (0, δ,0) 1
2 C22δ2

3 (0,0, δ) 1
2 C66δ2

4 (δ, δ,0)
(

C11
2 + C12 + C22

2

)
δ2

Table B.3
List of strain modes and the derived elastic constants for 2D square system used in 
VASPKIT based on energy-strain approach.

Strain index Strain vector ε Elastic energy �E
V

1 (δ,0,0) 1
2 C11δ2

2 (0,0, δ) 1
2 C66δ2

3 (δ, δ,0) (C11 + C12) δ2

Table B.4
List of strain modes and the derived elastic constants for 2D hexagonal system used 
in VASPKIT based on energy-strain approach.

Strain index Strain vector ε Elastic energy �E
V

1 (δ,0,0) 1
2 C11δ2

2 (δ, δ,0) (C11 + C12) δ2

There are 3 independent elastic constants: C11, C12 and C66. 
(See Table B.3.)

Cij =
⎛
⎝ C11 C12 0

C12 C11 0
0 0 C66

⎞
⎠ (B.3)

4. 2D hexagonal system

There are 2 independent elastic constants: C11 and C12. (See 
Table B.4.)

Cij =
⎛
⎝ C11 C12 0

C12 C11 0
0 0 C11−C12

2

⎞
⎠ (B.4)
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